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Open-set action recognition

* Open-setaction recognition (OSAR): two objectives

1. Identify unknown new actions from the known actions (binary
classification)

2. Classify known actions (C-way classification)
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Scene bhias in OSAR

* Existing datasets exhibit heavy scene bias, e.g., linear probing a
scene classifieryields ~55% accuracy on UCF101

* Two typical scenarios that OSAR methods may fail

K-nown action in unfamiliar scene Unknown action in familiar scene
Training Known testing Training Unknown testing
Horse riding Horse riding Parallel bars Somersault
Unfamiliar testing scene Familiar testing scene
!} ) .
Falsely recognize as unknown action Falsely recognize as known action
v v
Low precision on open-set detection Low recall on open-set detection




How OSAR methods are affected by the
scene?

* We design an empirical experiment to quantitative analyze
action in unfamiliar scene
* Unknown action in scene

* Setup:
1. Scene feature extraction for videos
2. Scene similarity computation between training and testing videos

3. Divide testing videos into subsets according to the scene similarity to
the training set

4. Measure OSAR performance on each subset



Open-Sed Recognition AUC (%)

How OSAR methods are affected by the
scene? (cont’d)

action in unfamiliar scene
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* Asthe scene from
actions gets more unfamiliar,
the OSAR performances
decreases

* Our method is the least
affected by the scene



Open-Set Recogniion AUC (%)

How OSAR methods are affected by the

scene? (cont’d)

Unknown action in scene
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* As the scene from unknown
actions gets more , the
OSAR performances
decreases

e Our method is the also least
affected by the scene



Scene-debiasing Open-set Action
Recognition (SOAR)

* Evidential deep learning baseline

e Adversarial scene reconstruction

* Adaptive adversarial scene classification
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Evidential deep learning (EDL) baseline

* EDL predicts an uncertainty to measure the likelihood that the
sample is unknown

1. Evidence is predicted for each class
2. ADirichlet distribution is built based on the evidence
3. Uncertainty is deterministically given via EDL
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Scene-debiasing via adversarial learning

e Model learns scene * Model learnsto remove scene
iInformationif it is trained Informationif it is adversarially
towards scene-related tasks. trained towards scene-related

tasks.

- adv )
Video J Model Scene related] Video d Model Scene relatedJ

tasks tasks

e.g., scene classification removes scene info
—_—



Adversarial scene reconstructlon

: TMF
* Adversarially reconstruct the

background
* Background estimationvia - S

. . econstruction targe
temporal median filter (TMF) ____ - £
* Works well if background is
- [] — [ | — ) — @&

° Uncel’talnty—Welghted Gradient reversal Decoder

reconstruction to focus on Reconstruction We'ghtT

the background regions
* Helps on dynamic background

Uncertainty map



Adaptive adversarial scene classification

* Given inputvideo, adversarially classify its scene

* With a spatial uncertainty guidance to apply more weight on the scene
regions

Adaptive adversarial scene classification
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Experiments — comparison with SOTA

* Best OSAR and closed-set action recognition performances

Methods UCFI01 [ [+MiTv2 [ ] UCF101 [ J+HMDBS51 [ '] Closed-set

AUCT | FAR@95 | | TPR@I0T | OpenmaF1 T | AUCT | FAR@95 | | TPR@I0T | OpenmaFI T | Accuracy
SoftMax 44.47 96.93 8.85 55.50 £ 0.45 | 44.34 97.91 3.66 7313 £0.12 94.10
OpenMax ['] | 63.96 45.89 378 66.21 +0.16 | 63.67 80.53 6.54 67.81 4 0.12 56.54
MC Dropout [ 1] | 93.66 25.43 85.72 68.12+0.20 | 86.11 77.50 70.13 7113+ 0.15 94.13
BNNSVI[:7] | 93.16 25.88 79.36 67.96 +0.19 | 85.63 71.52 66.14 71574017 |  93.89
DEAR [ ] 93.52 29.53 84.03 7512 £0.27 | 87.12 71.32 72.21 88.07 £ 0.20 93.97
SOAR (Ours) | 94.60 2533 8647 | 76.22+£0.32 | 88.10 69.57 7275 | 89.55£0.22 | 95.24

* The least affected by the scene
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Experiment — comparison with SOTA

* Bestopen-set/closed-set
uncertainty separation (highest
sym. KLD)
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Contributions

* Design an empirical experiments to quantitatively analyze the
scene bias

* Adversarial scene reconstruction & adaptive adversarialscene
classification to reduce the learned scene information

* State-of-the-art OSAR performance, and effectivelyreduces
scene bias

paper & code
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