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1 Introduction

Human actions are the cornerstone of our daily lives, serving as the primary means through which we interact with the
world and each other. From simple gestures to complex interactions, our actions convey a wealth of information about
our intentions, emotions, and behaviors.

(a) Video, normal, depth and 3D surface [4]. (b) Human body mesh [7]. (c) Optical flow.

Figure 1: Different modalities of human action representation.

Unlike humans, who perceive actions through a combination of visual, auditory, and tactile senses, in the field of
computer vision, human actions have traditionally been represented using a single modality, typically visual [2, 3]. This
approach, while straightforward, can introduce biases and noise, potentially limiting the accuracy and generalizability
of action analysis and synthesis [, 11, 9, 6]. To address these challenges, integrating multiple modalities—such as 3D,
kinematic and motion information—offers significant advantages (fig. 1). This multi-modal strategy not only mimics
the comprehensive way humans process complex actions but also significantly enhances the robustness and accuracy
of computer vision systems [14, 17, 15, 16, 10]. Leveraging diverse data sources enables more effective human action
learning, facilitating advanced applications in diverse fields such as interactive media, healthcare, and public safety.

Building on these observations, my research focuses on learning human action from different modal representations.
Specifically, my work is directed along two principal axes: enhancing generalizability within single-modal paradigm;
leveraging the synergistic potential of multi-modal representations. Below I explain the two directions in detail.

2 Enhancing generalizability within single-modal paradigm

The use of single-modal data, particularly visual, for learning human
actions is well-established in computer vision, primarily due to its 2
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simplicity and data availability. Traditionally, systems under this &' oA

o
paradigm have heavily depended on this type of data, which, though b /< \'i/‘ll/
rich in information, is often susceptible to noise and bias. Issues

such as varying lighting conditions, occlusions, and background can
significantly degrade the quality of visual data. Such reliance on
a single sensory input potentially fails to capture the multifaceted
nature of human actions, leading to misinterpretations and limitations
in generalization across environments To address these challenges and
enhance the robustness of single-modal action learning models, I have
introduced two methods: one focused on refining action synthesis and
the other on improving action recognition, each addressing specific
limitations of single-modal representations.
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Learning atomic action representation. Human motion synthesis, Figure 2: Atomic action assembly.

essential for enhancing immersive experiences in virtual reality, video
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Figure 3: Limitations in the single-modal paradigm.

games, and animation, often grapples with the challenge of limited data diversity, leading to unnatural action transitions
(fig. 3a left). To tackle this, I proposed ATOM (ATomic mOtion Modeling) [9], which breaks new ground by decomposing
actions into distinct atomic components (fig. 2). This strategy not only reflects a naturalistic approach that mirrors
human perception of actions as discrete, identifiable units but also ensures that each component maintains its uniqueness
through carefully tailored learning objectives aimed at preserving diversity and atomicity. By doing so, the proposed
ATOM significantly enhances the coherence and diversity of motion representations, enabling the synthesis of smooth
and realistic human action sequences (fig. 3a right). This method brings us closer to replicating the intricate dynamics
of human movement, thus improving the authenticity and engagement of digital human interactions in various media
Scene-bias mitigation. The reliance on spurious information like scene context still limits performance of action
recognition models, where the background can be unpredictable and varied (fig. 3b). The proposed method, Scene-
debiasing Open-set Action Recognition (SOAR), targets this issue by mitigating the scene bias through adversarial
learning [I1]. SOAR integrates an adversarial scene reconstruction module that reduces scene-related information
within features, coupled with an adaptive adversarial scene classification module designed to promote the extraction of
scene-invariant action features. These targeted strategies not only reduce dependence on background cues but also
improve the model’s capacity to reliably recognize actions across a variety of scenes. By doing so, SOAR significantly
elevates the reliability of open-set action recognition, making it more robust against environmental variabilities and
applicable to a broader range of real-world scenarios.

3 Leveraging multi-modal representations

The use of multi-modal data in computer vision, especially through combining visual data with 3D representations
and motion cues, offers a robust approach for learning human actions. This approach enables a comprehensive
representation of human actions by capturing both spatial depth and dynamic changes, which surpasses the capabilities
of single-modal systems. This section details my proposed methods on how to effectively leverage these modalities to
improve action analysis and synthesis.

Cross-modality learning. Human action localization
tasks, essential for understanding dynamic content in
videos, typically require detailed annotations that are
costly and time-consuming to obtain. Addressing this
challenge, my approach simplifies the annotation process ~ RCBStream | LA VIV
by utilizing video-level labels while still achieving precise Flow S'tream A AN
action localization. I introduced an adaptive two-stream Fusion Lo AN o 2 BN AT AN
consensus network (A-TSCN) that significantly enhances
the performance of action localization ([15, 13, 16]). This
method synergistically combines RGB and optical flow
features, employing an adaptive attention normalization loss and a iterative refinement strategy for cross-modal learning.
This approach builds upon the insight that late fusion typically yields more precise results, thereby effectively addressing
the inherent ambiguities of action localization with only video-level supervision (fig. 4). Moreover, the integration of
cross-modal learning exploits the complementary strengths of various data modalities, substantially improving both the
accuracy and adaptability of action localization across diverse video contexts.

Learning to generate a holistic human action. The capacity to control and manipulate human-centric video contents
has seen significant advancements with the evolution of generative models. Yet, most studies have focused on 2D

Figure 4: Cross-modal learning.
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Figure 5: Joint generation of human-centric video and depth.

content, limiting applications that require depth perception such as in virtual and augmented reality [8]. I addressed
this by proposing IDOL (unlfied Dual-mOdal Latent diffusion), which aims to jointly generate video and corresponding
depth maps for human actions, enhancing both visual fidelity and spatial understanding [10] (fig. 5). This method
leverages a dual-modal diffusion model that integrates video and depth generation, overcoming challenges posed by
their distinct nature. The integration is facilitated by converting depth maps to RGB images, enabling stylized video
generation and a more unified treatment of video and depth. By employing cross-modal learning strategies and a
unified denoising process within a dual-modal U-Net, my approach not only improves alignment and consistency
between the generated video and depth but also ensures efficient parameter usage. Additionally, to achieve precise
spatial alignment, I introduced motion consistency and cross-attention map consistency losses, significantly enhancing
the realism and applicability of the generated content across diverse settings.

4 Future research

My goal for research is to build a unified system that comprehensively grasps the nuances of human actions—capable not
only of accurately recognizing and categorizing different movements but also interpreting their underlying intentions
and generating corresponding actions in a responsive and realistic manner. This system aims to seamlessly integrate
the three core capabilities: understanding the complex dynamics of human actions, interpreting their context and
significance, and generating new action sequences that are indistinguishable from natural human behavior. Moving
forward, I plan to develop this concept through two specific projects detailed below.

Human action forensics. Recent video generation methods like Sora [I] allow for the creation of hyper-realistic
human-centric videos that can be nearly indistinguishable from genuine footage. While these technologies hold immense
potential for positive applications, they also pose significant risks. Realistically generated videos can be used to create
misleading or harmful content, such as deepfakes, which can spread misinformation or manipulate public opinion. As
the visual fidelity of generated videos approaches that of pristine recordings, traditional pixel-based analysis methods
may become insufficient for distinguishing between real and synthetic content [I2]. To address this challenge, I propose
a dual-aspect approach focusing on structure from motion (SfM) and motion pattern analysis. First, SEM will be
employed to reconstruct the 3D geometry of scenes from video sequences. By examining the consistency and accuracy
of these reconstructions, particularly around human subjects, we can detect anomalies typically absent in natural videos.
This method helps identify discrepancies in depth and spatial relationships that are indicative of synthetic generation.
Secondly, motion pattern analysis will concentrate on the dynamics of human movements, analyzing how human figures
move and interact with their environments. This analysis will scrutinize temporal consistency and smoothness of motion
to uncover unnatural patterns often found in generated content. Together, these methodologies form a comprehensive
forensic strategy that enhances the detection of synthetic manipulations in human-centric videos.

Multi-view human-centric video generation. Despite my IDOL [10] is able to generate 2.5D effects human-centric
videos, it currently lacks the multi-view ability that is critical for augmented reality (AR) and virtual reality (VR)
applications. To bridge this gap, I aim to develop a multi-view human-centric video generation method that can
produce dynamic video content viewable from multiple perspectives. This capability is essential for creating immersive
environments where users can view and interact with digital content from various angles, mimicking real-world
experiences. For this project, I plan to leverage SMPL (skinned multi-person linear) model, Gaussian splatting and video
diffusion models. The SMPL model will serve as an articulated template for human bodies, ensuring coherent and
realistic 3D representations. Gaussian splatting will be used for seamless rendering from multiple viewpoints, ensuring
smooth visual transitions that are essential for a fully immersive experience. Additionally, priors from video diffusion
models will be incorporated to maintain temporal consistency and realism across views. This combination aims to
produce high-quality, consistent video sequences that maintain visual integrity from different perspectives.
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